-
728x90
지난 포스트에서 Meta에서 공개한 LLMs 모델인 LLaMA의 다운로드 방법에 대해 알아보았습니다.
이번 포스트에서는 LLaMA를 Finetuning 해 ChatGPT에 버금가는(90%) 챗봇 성능을 보여준
Vicuna 모델의 다운로드 및 실행 방법을 소개합니다.Relative Response Quality Assessed by GPT-4 * Vicuna
: An Open-Source Chatbot Impressing GPT-4 with 90%* ChatGPT Quality
학습 방법 등 모델에 대한 자세한 설명은 아래 Post를 참고하시기 바랍니다.
이번 포스트에서는 설치 및 실행 방법을 위주로 소개합니다.Vicuna (generated by stable diffusion 2.1) Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90%* ChatGPT Quality
by the Team with members from UC Berkeley, CMU, Stanford, MBZUAI, and UC San Diego
vicuna.lmsys.org
Vicuna 13B Demo, 참고 - https://github.com/lm-sys/FastChat 1. Install
conda env에서 해당 라이브러리 설치를 추천드립니다.
pip3 install fschat
2. Model Weights
1) 우선 지난 포스트에서 설명한 것과 같이 LLaMA model license를 통해 LLaMA weights을 다운로드합니다.
2) 그 후 Hugginface format으로 변환하는 과정을 거칩니다. [참고]
아래와 같이 파일을 만들어 코드를 복붙한 뒤,
convert_llama_weights_to_hf.py [참고] - 기존 코드에서 LlamaTokenizerFast -> LlamaTokenizer로 수정
더보기# Copyright 2022 EleutherAI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import gc import json import math import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizer except ImportError as e: warnings.warn(e) warnings.warn( "The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion" ) LlamaTokenizerFast = None """ Sample usage: ``` python src/transformers/models/llama/convert_llama_weights_to_hf.py \ --input_dir /path/to/downloaded/llama/weights --model_size 7B --output_dir /output/path ``` Thereafter, models can be loaded via: ```py from transformers import LlamaForCausalLM, LlamaTokenizer model = LlamaForCausalLM.from_pretrained("/output/path") tokenizer = LlamaTokenizer.from_pretrained("/output/path") ``` Important note: you need to be able to host the whole model in RAM to execute this script (even if the biggest versions come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM). """ INTERMEDIATE_SIZE_MAP = { "7B": 11008, # "13B": 13824, # "30B": 17920, # "65B": 22016, } NUM_SHARDS = { "7B": 1, # "13B": 2, # "30B": 4, # "65B": 8, } def compute_intermediate_size(n): return int(math.ceil(n * 8 / 3) + 255) // 256 * 256 def read_json(path): with open(path, "r") as f: return json.load(f) def write_json(text, path): with open(path, "w") as f: json.dump(text, f) def write_model(model_path, input_base_path, model_size): os.makedirs(model_path, exist_ok=True) tmp_model_path = os.path.join(model_path, "tmp") os.makedirs(tmp_model_path, exist_ok=True) params = read_json(os.path.join(input_base_path, "params.json")) num_shards = NUM_SHARDS[model_size] n_layers = params["n_layers"] n_heads = params["n_heads"] n_heads_per_shard = n_heads // num_shards dim = params["dim"] dims_per_head = dim // n_heads base = 10000.0 inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head)) # permute for sliced rotary def permute(w): return w.view(n_heads, dim // n_heads // 2, 2, dim).transpose(1, 2).reshape(dim, dim) print(f"Fetching all parameters from the checkpoint at {input_base_path}.") # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) loaded = torch.load(os.path.join(input_base_path, "consolidated.00.pth"), map_location="cpu") else: # Sharded loaded = [ torch.load(os.path.join(input_base_path, f"consolidated.{i:02d}.pth"), map_location="cpu") for i in range(num_shards) ] param_count = 0 index_dict = {"weight_map": {}} for layer_i in range(n_layers): filename = f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin" if model_size == "7B": # Unsharded state_dict = { f"model.layers.{layer_i}.self_attn.q_proj.weight": permute( loaded[f"layers.{layer_i}.attention.wq.weight"] ), f"model.layers.{layer_i}.self_attn.k_proj.weight": permute( loaded[f"layers.{layer_i}.attention.wk.weight"] ), f"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[f"layers.{layer_i}.attention.wv.weight"], f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[f"layers.{layer_i}.attention.wo.weight"], f"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w1.weight"], f"model.layers.{layer_i}.mlp.down_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w2.weight"], f"model.layers.{layer_i}.mlp.up_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w3.weight"], f"model.layers.{layer_i}.input_layernorm.weight": loaded[f"layers.{layer_i}.attention_norm.weight"], f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[f"layers.{layer_i}.ffn_norm.weight"], } else: # Sharded # Note that in the 13B checkpoint, not cloning the two following weights will result in the checkpoint # becoming 37GB instead of 26GB for some reason. state_dict = { f"model.layers.{layer_i}.input_layernorm.weight": loaded[0][ f"layers.{layer_i}.attention_norm.weight" ].clone(), f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][ f"layers.{layer_i}.ffn_norm.weight" ].clone(), } state_dict[f"model.layers.{layer_i}.self_attn.q_proj.weight"] = permute( torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(n_heads_per_shard, dims_per_head, dim) for i in range(num_shards) ], dim=0, ).reshape(dim, dim) ) state_dict[f"model.layers.{layer_i}.self_attn.k_proj.weight"] = permute( torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wk.weight"].view(n_heads_per_shard, dims_per_head, dim) for i in range(num_shards) ], dim=0, ).reshape(dim, dim) ) state_dict[f"model.layers.{layer_i}.self_attn.v_proj.weight"] = torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wv.weight"].view(n_heads_per_shard, dims_per_head, dim) for i in range(num_shards) ], dim=0, ).reshape(dim, dim) state_dict[f"model.layers.{layer_i}.self_attn.o_proj.weight"] = torch.cat( [loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(num_shards)], dim=1 ) state_dict[f"model.layers.{layer_i}.mlp.gate_proj.weight"] = torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(num_shards)], dim=0 ) state_dict[f"model.layers.{layer_i}.mlp.down_proj.weight"] = torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(num_shards)], dim=1 ) state_dict[f"model.layers.{layer_i}.mlp.up_proj.weight"] = torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(num_shards)], dim=0 ) state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq for k, v in state_dict.items(): index_dict["weight_map"][k] = filename param_count += v.numel() torch.save(state_dict, os.path.join(tmp_model_path, filename)) filename = f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin" if model_size == "7B": # Unsharded state_dict = { "model.embed_tokens.weight": loaded["tok_embeddings.weight"], "model.norm.weight": loaded["norm.weight"], "lm_head.weight": loaded["output.weight"], } else: state_dict = { "model.norm.weight": loaded[0]["norm.weight"], "model.embed_tokens.weight": torch.cat( [loaded[i]["tok_embeddings.weight"] for i in range(num_shards)], dim=1 ), "lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(num_shards)], dim=0), } for k, v in state_dict.items(): index_dict["weight_map"][k] = filename param_count += v.numel() torch.save(state_dict, os.path.join(tmp_model_path, filename)) # Write configs index_dict["metadata"] = {"total_size": param_count * 2} write_json(index_dict, os.path.join(tmp_model_path, "pytorch_model.bin.index.json")) config = LlamaConfig( hidden_size=dim, intermediate_size=compute_intermediate_size(dim), num_attention_heads=params["n_heads"], num_hidden_layers=params["n_layers"], rms_norm_eps=params["norm_eps"], ) config.save_pretrained(tmp_model_path) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("Loading the checkpoint in a Llama model.") model = LlamaForCausalLM.from_pretrained(tmp_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True) # Avoid saving this as part of the config. del model.config._name_or_path print("Saving in the Transformers format.") model.save_pretrained(model_path) shutil.rmtree(tmp_model_path) def write_tokenizer(tokenizer_path, input_tokenizer_path): # Initialize the tokenizer based on the `spm` model tokenizer_class = LlamaTokenizer if LlamaTokenizer is None else LlamaTokenizer print(f"Saving a {tokenizer_class.__name__} to {tokenizer_path}.") tokenizer = tokenizer_class(input_tokenizer_path) tokenizer.save_pretrained(tokenizer_path) def main(): parser = argparse.ArgumentParser() parser.add_argument( "--input_dir", help="Location of LLaMA weights, which contains tokenizer.model and model folders", ) parser.add_argument( "--model_size", # choices=["7B", "13B", "30B", "65B", "tokenizer_only"], choices= ["7B"] ) parser.add_argument( "--output_dir", help="Location to write HF model and tokenizer", ) args = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir, input_base_path=os.path.join(args.input_dir, args.model_size), model_size=args.model_size, ) spm_path = os.path.join(args.input_dir, "tokenizer.model") write_tokenizer(args.output_dir, spm_path) if __name__ == "__main__": main()
아래와 같은 명령을 실행합니다. 현재 명령어에서는 7B 예시를 보여주었지만 다른 더 큰 모델(13B 등)도 가능합니다.
python convert_llama_weights_to_hf.py \ --input_dir /data/LLaMA/ckpt_7B \ --model_size 7B --output_dir /data/LLaMA/HF
이때 /data/LLaMA/ckpt_7B는 아래와 같은 상태여야 합니다.
위의 명령어를 실행하면 아래와 같이 hugginface format으로 변환을 완료할 수 있습니다.
Fetching all parameters from the checkpoint at /data/LLaMA/ckpt_7B/7B. Loading the checkpoint in a Llama model. Loading checkpoint shards: 100%|███████████████████████████████████████████████████████████████████████████████████████████| 33/33 [00:05<00:00, 5.86it/s] Saving in the Transformers format. Saving a LlamaTokenizer to /data/LLaMA/HF/.
3) Vicuna weights
python3 -m fastchat.model.apply_delta \ --base-model-path /data/LLaMA/HF \ --target-model-path /data/LLaMA/vicuna-7b \ --delta-path lmsys/vicuna-7b-delta-v1.1
위와 같은 명령을 실행하면 아래와 같이 vicuna weigths을 얻을 수 있습니다.
Loading the delta weights from lmsys/vicuna-7b-delta-v1.1 Loading checkpoint shards: 100%|█████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:03<00:00, 1.89s/it] Loading the base model from /data/LLaMA/HF Loading checkpoint shards: 100%|█████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:03<00:00, 1.79s/it] Applying the delta Applying delta: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████| 323/323 [00:01<00:00, 179.63it/s] Saving the target model to /data/LLaMA/vicuna-7b
3. Vicuna 실행
python3 -m fastchat.serve.cli --model-path /data/LLaMA/vicuna-7b
USER: 라는 글자가 뜨면 원하는 질문을 던지면 됩니다.
"Give me a 3day travel plan for Seoul" 이라는 질문을 하자 아래와 같이 답을 합니다.
728x90'Machine Learning > Large Language Models' 카테고리의 다른 글
상업적 사용이 가능한 LLMs, FastChat-T5 (0) 2023.05.01 LLaMA(Meta AI) 모델 파라미터 다운로드 (1) 2023.03.06